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ABSTRACT 

As machine learning and artificial intelligence technologies 

continue to mature, these powerful computational tools have the 

potential to advance other areas of active research, including 

material sciences. Classifier algorithms able to detect trace 

explosives and dangerous substances using computers - without 

human involvement - are of high relevance to the Navy. This 

paper proposes a convolutional neural network (CNN) based 

method to classify 55 different chemical substances (called 

analytes) on surfaces by active infrared (IR) backscatter imaging 

spectroscopy (IBIS) technology. We first analyzed the data by 

plotting the diffuse reflectance signature as a function of 

wavelength, with the intention to gain insight on how the analytes 

are affected by certain factors. We then created a convolutional 

neural network deep learning algorithm able to classify these 

analytes with a high accuracy when given their features. Through 

our research, we demonstrated that machine learning algorithms 

can still perform very well despite factors such as gaussian noise, 

very little analyte mass, and disruptions caused by the substrate 

(background material). This is partly due to the nature of CNNs, 

but numerous other procedures that enhance model performance 

were also used. 
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1 Introduction 

Machine learning is becoming increasingly prevalent in many 

fields to aid us on our quest for scientific discovery and 

technological advancement. The remote detection of trace 

explosives and other dangerous chemical substances at standoff 

distances is a vital topic of ongoing research and algorithm 

development. The objective of the present work is to detect and 

identify potential threats, including explosives and drugs of abuse. 

Because the target surfaces may be disrupted by contamination 

transferred by fingerprints, trace standoff detection may be 

important to identify those associated with bomb making, narcotic 

synthesis such as fentanyl, or transportation of illegal drugs, and 

in forensic applications. Our IBIS technical approach implements 

active illumination for capturing the diffuse IR reflectance [1]-[6] 

signatures of particles deposited onto surfaces. 

Our goal is to create and test a machine learning algorithm that 

could perform multi-class classification on the 55-analyte dataset. 

These analytes are represented in simulated diffuse reflectance 

spectra, each of which consists of 1,701 features and has varying 

amounts of mass and noise. The spectra are meant to test the 

capabilities and limits of machine learning. More specifically, this 

simulated dataset (consisting of 49,500 instances) is built with the 

intention to explore machine learning algorithms, in terms of 

behavior when fed noisy data, identification of analytes with tiny 

amounts of mass, and response to interference caused by the 

substrate. The construction of this dataset and the capturing of the 

reflectance spectra are based on the IBIS technology [7]. 

 

2 Proposed Method 
Our multiclass classification algorithm lies at the intersection of 

machine learning and material sciences. To gain a deeper 

understanding of the problem and plan the construction of the 

algorithm, it is imperative to simulate the diffuse reflectance 

spectra of particles on substrates. 

 

3 Simulation of Infrared Diffuse Reflectance 

Spectra 
The classification algorithm learns to distinguish between analytes 

by associating certain features with certain analytes, and thus it is 

important to understand the differing features. Using the Plotly 

library, we generate the following two plots. The reflectance 

signature of dibenzoyl peroxide when it is deposited as particles 

on glass (Fig. 1) is compared to the reflectance signature of heroin 

deposited on glass (Fig. 2). The goal of these visualizations is to 

gain insight on these distinguishing features such that they can be 

accentuated and weighted in the model.  

Figure 1: Analyte 1 (dibenzoyl peroxide) on substrate 1 (soda-

lime glass), 0.1% noise 
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Figure 2: Analyte 14 (heroin) on substrate 1 (soda-lime glass), 

no noise 

 

It becomes evident after analyzing the two plots that the large 

peak around feature 250 is caused by the substrate spectra, as 

there is much more background material than the substance itself, 

which explains the high values. This is thus the “background” that 

must be handled by the model. However, the sharp dip around 

feature 200 present in Fig. 1 but not in Fig. 2 suggests that feature 

200 and those around it are distinguishing features of analyte 1. 

Similarly, between features 1000 and 1400 there is a series of 

winding curves present in Fig. 2 but not in Fig. 1, suggesting that 

those are distinguishing features of analyte 14. By choosing the 

correct machine learning model and tuning its hyperparameters 

accordingly, the algorithm will be able to pick up on these 

features and classify the analytes accurately.  

Lastly, it can be observed that the plot in Fig. 1 is more erratic due 

to the added noise. It is therefore important to choose the correct 

hyperparameters for the model such that it does not mistake the 

noise for relevant features. The model should be precise enough to 

capture fine details without being confused by noise, and complex 

enough to capture the larger patterns such as the distinguishing 

features of analyte 14. 

 

4 Convolutional Neural Network Algorithm 
To implement the ideas discussed previously, we created a 1D 

convolution model that receives one instance of the data as input, 

in the shape (1701,1,1). During each convolution, filters of 

varying sizes are slid across the data in order to capture features of 

different sizes.  

Based on the exploratory data analysis, we chose filter sizes of 10, 

100, and 300. Through hyperparameter testing on validation data, 

we found that a filter size of 10 was optimal for capturing small 

features. If it were any smaller, it would pick up noise as features. 

The 100 and 300 sized filters were chosen to capture broader 

patterns and the general shape, or derivative information, of the 

data. We chose 3 convolutional layers, so that each layer may 

build off of the patterns found in the previous layer and recognize 

more complex patterns. Lastly, since there are more combinations 

of patterns to recognize as they get more complex, the number of 

filters increases in each layer accordingly (64 in layer 1, 128 in 

layer 2, 256 in layer 3). After performing many experiments 

tweaking these hyperparameters, this combination achieved the 

highest performance.  

After the feature extraction of the convolutional layers is 

complete, these distinguishing features must now be flattened and 

passed into a multi-layer perceptron (MLP) to be classified as a 

certain analyte. The MLP used in this project consisted of three 

fully connected (dense) layers, with 300, 150, and 55 neurons 

respectively. The number of neurons in the first fully connected 

layer must match the number of input features, which worked out 

to be 300 after the convolution layers. The number of neurons in 

the last layer must match the number of labels in multi-class 

classification problems. The number of neurons in the hidden 

layer is generally set to a number in between the input and output 

layers. 

One problem the CNN faced is that it predicted the same label for 

all 12,375 testing instances. This is due to the vanishing gradients 

problem, where any neuron with a negative value would just be 

set to 0 due to the nature of the ReLU activation function 

(saturates for values less than 0). This is solved by replacing it 

with the LeakyReLU activation function, which has a slight 

gradient for values less than 0 and thus does not saturate (Fig. 3).  

 

Figure 3: The ReLU activation function (top) is defined as f(x) 

= max(0,x) and saturates on the left side. The LeakyReLU 

activation function (bottom) is defined as f(x) = max(α*x,x) 

where the left side has a slope or “leak” with magnitude of α 

 

In the final layer of the model is the SoftMax activation function, 

which converts its input neurons into a list of 55 probabilities all 

adding up to 1, representing the algorithm’s confidence score for 

each class. When the model makes a prediction for a certain 

instance, it is set to take the highest probability from that list.  

 

5 Experimental Results 

5.1 Metrics 

The primary metrics used to evaluate the performance of the CNN 

model were the F1-score and confusion matrix. After the 

model makes its final predictions on the test set, the F1-

score is calculated for each of the 55 labels and averaged to 

produce a metric that takes into account both precision and 
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recall. The maximum score is 1.0. Let TP denote the 

number of true positives, FN denote the number of false 

negatives, and FP denote the number of false positives: 

𝑅𝑒𝑐𝑎𝑙𝑙: 𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛: 𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹1 𝑆𝑐𝑜𝑟𝑒: 𝐹 =  
2 ∙ 𝑅 ∙ 𝑃

𝑅 + 𝑃
 

The second performance metric is a visual representation of 

precision and recall, which is the confusion matrix. The confusion 

matrix compares the model’s predicted labels to the true labels, 

where a perfect model would have everything along the main 

diagonal Anything off-diagonal is a wrong prediction made by the 

model, as shown in Fig. 4. 

Figure 4: The confusion matrix comparing the CNN’s 

predicted labels to the true chemical labels. The confusion 

matrix itself is a 55x55 array of numbers, and here it is 

represented as a heatmap with darker values representing 

higher accuracy. 

 

It can be seen from the vertical stripes that the model tends to 

mislabel analytes as 1, 5, and 41. This could be because their 

reflectance signatures are similar to those of the substrate spectra, 

which, when the mass loading is low, dominates the combined 

spectra. 

5.2 Optimization Strategy 

Even after tweaking the hyperparameters in the CNN model, the 

model’s F1-score is still far from optimized, at 74%. Thus, it is 

necessary to look into the model’s learning process, which is 

governed by the stochastic gradient descent (SGD) optimizer. 

SGD is the mathematical process involved in backpropagation 

which makes the model learn. In short, it calculates the cost 

function of the model’s predictions (how far off the predictions 

are), and then tries to minimize it by finding the global minimum 

through taking small steps down the steepest gradient.  

SGD can be improved by tweaking the decay parameter. Our 

model has the SGD decay set to 0.0001, meaning that after each 

epoch (training iteration) the SGD takes smaller and smaller steps, 

thus reducing the chance that it will overshoot the global 

minimum. 

Another optimization technique used in the CNN is batch 

normalization. As the millions of parameters in this deep learning 

network get updated after every epoch, the vanishing gradients 

problem may come back during training and drastically slow 

down the learning process, making it seem as though the model is 

not learning. Batch normalization solves this by standardizing the 

data after every iteration, as opposed to only scaling the data once 

before training.  

Lastly, in each of the dense layers of the MLP, the He kernel 

initialization [8] is used to initialize the weights in a normal 

distribution with controlled variance, as opposed to completely 

randomly. This is proven to improve model performance and 

speed up training. 

The two confusion matrices shown in Fig. 5 compare the model’s 

performance before and after the optimizers were added. Judging 

by the difference between the general spottiness of the confusion 

matrices, it becomes clear that these optimization techniques have 

worked. Indeed, the model performance improved to 84%. 

Figure 5: CNN’s confusion matrix without any optimization 

techniques (top) and CNN’s confusion matrix with SGD 

optimization and batch normalization (bottom) 

 

6 Conclusion 
To fully implement our IBIS technology for the standoff detection 

of trace chemicals on surfaces, we have developed a convolutional 

neural network that takes in a combination of analyte and 

substrate spectra as input, and returns the predicted label of the 

analyte as output. We demonstrated that machine learning 

algorithms can overcome many challenges posed by our large 

dataset (noisy data, small mass loadings), through the tweaking of 

hyperparameters (filter size, number of filters, number of 

convolutional layers). We also implemented several optimization 

techniques (SGD decay, batch normalization, kernel initialization) 

to further improve model performance.  

In the future this work will bolster technological advancements in 

AI, allowing computers to outperform humans while keeping 
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people safe in the process. Beyond the applications in material 

science and chemical detection, machine learning has other 

broader implications for the Navy. This includes autonomous 

warships capable of carrying out advanced warfare tactics, and 

unmanned submarines capable of conducting extensive undersea 

research. 
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