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ABSTRACT
Personal thermal comfort models aim to predict an individual’s
thermal comfort response, instead of the average response of a
large group. Recently, machine learning algorithms have proven to
be having enormous potential as a candidate for personal thermal
comfort models. But, often within the normal settings of a building,
personal thermal comfort data obtained via experiments are heavily
class-imbalanced. There are a disproportionately high number of
data samples for the “Prefer No Change”class, as compared with
the “Prefer Warmer”and “Prefer Cooler”classes. Machine learning
algorithms trained on such class-imbalanced data perform sub-
optimally when deployed in the real world. To develop robust ma-
chine learning-based applications using the above class-imbalanced
data, as well as for privacy-preserving data sharing, we propose
to implement a state-of-the-art conditional synthetic data genera-
tor to generate synthetic data corresponding to the low-frequency
classes. Via experiments, we show that the synthetic data gener-
ated has a distribution that mimics the real data distribution. The
proposed method can be extended for use by other smart building
datasets/use-cases.
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1 INTRODUCTION
Humans spend more than 90% of their day indoors, where their
well-being, performance and energy consumption are demonstra-
bly linked to thermal comfort. But, study shows that only 40% of
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commercial building occupants are satisfied with their thermal en-
vironment [10]. There has been significant amount of research done
to develop models to accurately predict thermal comfort metrics for
occupants in a building. Contrary to conventional group-based ther-
mal comfort models, personal thermal comfort models [13] focus
on developing thermal comfort predictors at a building occupant
level. They have proved efficient in human-centric cyber-physical
systems to efficiently regulate the building control systems, as well
as to understand the correlation between human factors affecting
comfort. The general process is to conduct experiments with hu-
man subjects and collect their physiological signals along with
other environmental parameters, and thermal sensations and pref-
erence. Then prediction models are trained to predict the thermal
preference that governs the thermal comfort management actu-
ators/ controllers. Recently, machine learning models have been
introduced to successfully predict thermal comfort.

In real life, often the thermal comfort data obtained is highly
class-imbalanced. For instance, in the experiment in Liu et al. [14],
on an average for each subject, around 65% of the data belonged to
the “Prefer No Change”class, and the rest equally divided between
the “Prefer Warmer”and “Prefer Cooler”classes. Machine learning
algorithms require high amounts of varied data for efficient perfor-
mance. Under such class-imbalance, machine learning algorithms
perform sub-optimally. In case of buildings, having access to sig-
nificant amounts of real data for the low-frequency classes, with
human subjects is hard and expensive. To balance the classes, re-
cent works have proposed undersampling the high-frequency class
to match the count with low-frequency classes, or oversampling
the low-frequency classes to match with the high-frequency class.
In the former method, there is loss of information, which is un-
desirable, and in the latter case, there is possibility of overfitting.
Another challenge that is faced comes from the concern of privacy.
Often, sharing of thermal comfort data that are associated with
users in a building face the challenge of privacy issues.

To deal with the above challenges, we propose to generate con-
ditional synthetic data for personal thermal comfort models. We
propose to use the conditional generative models proposed in Das
et al. [5] to generate synthetic data for the “Prefer No Change”,
“Prefer Warmer”and “Prefer Cooler”classes. The inputs to the gen-
erative model are thermal comfort features including physiological
signals, temperature, humidity, clothing, activity levels, external
parameters etc. The model is capable of extracting the feature rep-
resentations corresponding to the individual classes, and also to
generate new synthetic data keeping the conditional feature repre-
sentation intact and changing the local noise. Our results show that
the proposed model is able to generate synthetic data that mimic
the real data.
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Figure 1: Illustration of the proposed conditional synthetic generation. (Best viewed in color)

2 RELATEDWORKS
Synthetic data generation has been proposed to expand the diver-
sity and amount of the existing training data in many different
fields, often to improve the robustness of machine learning mod-
els. A few examples are as following. In healthcare, Ghorbani et al.
[8] propose a generative adversarial network (GAN [9, 19])-based
synthetic data generator to improve the diversity and the amount
of skin lesion images. Kohlberger et al. [12] synthesize pathology
images for cancer with realistic out-of-focus characteristics to eval-
uate general pathology images for focus quality issues. Han et al.
[11] propose synthetic generation to produce high-resolution artifi-
cial radiographs. For privacy-preserving data sharing, Xu et al. [17]
propose a method to model tabular data to enable their synthetic
generation. In computer vision Das et al. [4] propose synthetic data
generation across multiple domains. In smart buildings, Quintana
et al. [16] used a conditional tabular GAN based model for thermal
comfort synthetic data generation. We use a state-of-the-art condi-
tional synthetic data generation model that has shown improved
results over all baselines to generate thermal comfort synthetic
data.

3 METHODS
3.1 Thermal Preference Classifier
Our model is based on the method proposed in [5]. Suppose we
have 𝑁 samples X with labels 𝑌 , with 3 possible thermal prefer-
ence classes, Warmer/No Change/Cooler. We first train a classi-
fier 𝐶 (consisting of a feature extractor network denoted by 𝑔(·),
and a final fully-connected and softmax layer, denoted by ℎ(·), i.e.
𝐶 (𝑥) = ℎ(𝑔(𝑥))) to classify the input sample (which in our case
are thermal comfort features) and associated labels as Warmer/No

Change/Cooler. Mathematically, this step solves the following min-
imization with backpropagation:

min
𝐶

L𝐶 (X, 𝑌 ) = −E(𝑥,𝑦)∼(X,𝑌 )
2∑︁

𝑙=1

[
I[𝑙=𝑦 ] log𝐶 (𝑥))

]
(1)

By virtue of the training process, the classifier learns to discard
local information and preserve the features necessary for classifi-
cation (conditional information) towards the downstream layers.
Once the classifier is trained, we freeze its parameters, and use
it to extract the conditional (Warmer/No Change/Cooler) feature
representation 𝑧 = 𝑔(𝑥) (as a vector without spatial characteristics)
at the output of the feature extractor network for input image 𝑥 .
The dimension of 𝑧 is chosen such that dim(𝑧) << dim(𝑥).

3.2 Conditional Generative Flow
During the training phase for the flowmodel, the conditional feature
representation 𝑧 is fed to the conditional generative flow. The flow
model is trained using maximum-likelihood, transforming 𝑥 to its
local representation a , i.e.

𝑓\ (𝑥, 𝑧) = a ∼ N(0, 𝐼 ) (2)

with a having the same dimension as 𝑥 by the inherent design of
flow models. We use the method introduced by Das et al. [5], Ma
et al. [15] to incorporate the conditional input 𝑧 in flow model.
Coupling layers in affine flow models have scale (𝑠 (·)) and shift
(𝑏 (·)) networks [2, 6], which are fed with inputs after splitting,
and their outputs are concatenated before passing on to the next
layer. We incorporate the conditional information 𝑧 in the scale and
shift networks. Mathematically, (with 𝑥 as the input, 𝐷 as input
dimension, 𝑑 as the split size,and 𝑦 as output of the layer),

𝑥1:𝑑 , 𝑥𝑑+1:𝐷 = split(𝑥)
𝑦1:𝑑 = 𝑥1:𝑑

𝑦𝑑+1:𝐷 = 𝑠 (𝑥1:𝑑 , 𝑧) ⊙ 𝑥𝑑+1:𝐷 + 𝑏 (𝑥1:𝑑 , 𝑧)
𝑦 = concat(𝑦1:𝑑 , 𝑦𝑑+1:𝐷 )
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Table 1: Thermal Preference classification performance with classifiers trained on real and synthetic data. The first number
among the pair in each box is performance with a classifier trained on real data, while the second number is with a classifier
trained on synthetic data generated by our proposed model.

Subject ID
1 2 3 4 5

Classification Metrics
Cohen’s Kappa 28.77%/27% 24.59%/23.12% 19.23%/17.91% 33.65%/31.78% 18.37%/15.49%

Accuracy 84.3%/79.56% 79.22%/75.76% 63.47%/59.03% 77.19%/77.01% 63.22%/61.42%
AUC 0.81/0.79 0.8/0.77 0.67/0.62 0.78/0.77 0.76/0.74

Since flow models are bijective mappings, the exact 𝑥 can be re-
constructed by the inverse flow with 𝑧 and a as inputs. During
the generation phase, for an input sample 𝑥 , we compute the con-
ditional feature representation 𝑧. Keeping the conditional feature
representation the same, we sample a new local representation ã ,
and generate a conditional synthetic sample 𝑥 , i.e.

ã ∈ N (0, 𝐼 ), 𝑥 = 𝑓 −1
\

(ã, 𝑧) (3)

Here, 𝑥 has the same conditional (Warmer/No Change/Cooler) fea-
tures as 𝑥 , but has a different local representation. An illustration
of the proposed model is provided in Fig. 1.

4 EXPERIMENTS AND RESULTS
In [14], authors conducted an experiment to collect physiological
signals (e.g., skin temperature at various parts of the body, heart
rate) of 14 subjects (6 female and 8 male adults) and environmental
parameters (e.g., air temperature, relative humidity) for 2–4 weeks
(at least 20 h per day). The subjects also took an online survey,
where they reported their thermal sensation (on a scale of -3 to +3)
and thermal preference (Warmer, Cooler, No Change) among other
parameters.

For this work, we generated synthetic data for the 3 thermal
preference classes (Warmer, No Change, Cooler) for 5 of the sub-
jects. We designed fully-connected neural networks for the feature
extractor, classifier, and conditional generator blocks. A test set is
held out from the real dataset to be used for quantitative testing. We
then compare the classification performance (COVID/Non-COVID)
on this test set for a classifier trained on real data vs a classifier
trained on the generated synthetic data. Since the datasets are im-
balanced, we report the cohens kappa, accuracy and AUC score
(together referred to as classification metrics).

The classification results for a classifier trained on the real data vs
a classifier trained on purely conditional synthetic data, and tested
on a hold-out set of real data, is given in Table 1. The classifier
trained with synthetic data from our proposed model has the close
classification performance to that of the classifier trained on real
data. This shows the capability of our method to generate synthetic
samples with a distribution that closely matches the real conditional
data distribution.

5 CONCLUSION AND FUTUREWORK
We presented preliminary results for thermal comfort synthetic
data generation using a state-of-the-art conditional synthetic data
generation model. The results show that the generative model is
capable of generating synthetic data that are close in distribution

with the real data. There are numerous future work to the prelimi-
nary work that we have presented. The network of the models can
be improved (with e.g. ResNets) for better results. Various scenarios
can be explored such as mixing and interpolation in the latent space
to generate unseen data. A similar methodology can be extended
for synthetic data generation in several more smart building use
cases [1, 3, 7, 18].
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